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MotivationMotivation

Why do we need to separate COWhy do we need to separate CO22??
-- Carbon dioxide emits from most industrial facilitiesCarbon dioxide emits from most industrial facilities
-- Carbon dioxide causes Carbon dioxide causes ‘‘Green House effectGreen House effect’’
-- Possible use as a feedstock (warm COPossible use as a feedstock (warm CO22) to synthesize fuels) to synthesize fuels

Why do we use membrane for COWhy do we use membrane for CO22 separation?separation?
-- Simple, continuous and energy efficient processSimple, continuous and energy efficient process
-- Applicable to the process at high temperature Applicable to the process at high temperature 
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Impact of this researchImpact of this research
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Inorganic membrane for COInorganic membrane for CO22 separationseparation

Polymeric membrane (unstable at high temperature) Polymeric membrane (unstable at high temperature) 
MicroporousMicroporous inorganic membrane (low selectivity at inorganic membrane (low selectivity at 
T>350T>350ooC)C)
Ionic conducting membrane (from concept of fuel cell):Ionic conducting membrane (from concept of fuel cell):

Operated at 400Operated at 400--600600ooC with high selectivityC with high selectivity
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Principle of MCFCPrinciple of MCFC

ee--
Common electrolyte :
Eutectic composition of 
Li2CO3 / K2CO3 (62 mol% / 38 mol%)

Operating Temperature :
600 ~ 650oC

Major problem : 
Precipitation / Contamination of 
electrodes, reducing performance 
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Concept of dualConcept of dual--phase membranephase membrane
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ObjectivesObjectives

Synthesis of the dualSynthesis of the dual--phase membranephase membrane
-- Prepare dense and stable dualPrepare dense and stable dual--phase membrane phase membrane 

Characterization of dualCharacterization of dual--phase membranephase membrane
-- GasGas--tightness for tightness for He and NHe and N22
-- XRD / SEM analysis XRD / SEM analysis →→ Identification of dual phase Identification of dual phase 

Design of high temperature seal & cell Design of high temperature seal & cell 
-- Sealing Test with various seals Sealing Test with various seals →→ Gas tight cell designGas tight cell design

COCO2 2 separation at high temperatureseparation at high temperature
-- PermselectivityPermselectivity of COof CO22/N/N22 (400(400--600600ooC) > 100C) > 100
-- Permeance of COPermeance of CO22 (400~600(400~600ooC) > 1~5C) > 1~5 x10x10--77 mol/mmol/m22.s.Pa.s.Pa
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Experimental StrategyExperimental Strategy
Development of methods for membrane preparation Development of methods for membrane preparation 
(Completed)(Completed)
-- Material selection, contact time, temperature, preheatingMaterial selection, contact time, temperature, preheating
Membrane characterization (Membrane characterization (CompletedCompleted))
-- He gas tightness / XRD / SEM with EDSHe gas tightness / XRD / SEM with EDS
Designing of high temperature seal and cell Designing of high temperature seal and cell 
(Completed)(Completed)
-- He permeation and stability test with various sealsHe permeation and stability test with various seals
Single / Binary gas permeation test (Completed)Single / Binary gas permeation test (Completed)
-- gas (He, COgas (He, CO22, N, N22, O, O22+CO+CO22) ) permeancespermeances at various Temp.  at various Temp.  
Separation with multiSeparation with multi--component gascomponent gas (continued)(continued)
-- MulticomponentMulticomponent separation system (COseparation system (CO22, N, N22, O, O22 mixture)mixture)
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Material SelectionMaterial Selection
Metal supportMetal support

Spherical particle Spherical particle 
compactedcompacted

StructureStructure

0.5, 2, 5, 100.5, 2, 5, 10Media GradeMedia Grade
2525--45%45%PorosityPorosity
1~101~10µµmmPore diameterPore diameter

101044 S/cm S/cm 
Electrical Electrical 
ConductivityConductivity

Stainless steel 316Stainless steel 316MaterialMaterial

General informationGeneral information Media Grade 0.5 (SEM, 200x)Media Grade 0.5 (SEM, 200x)

 

He permeation test  He permeation test  →→ Selection of suitable supportSelection of suitable support
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Characterization of metal substrateCharacterization of metal substrate
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Characterization of metal substrateCharacterization of metal substrate

Parameters related to pore size with various supports Parameters related to pore size with various supports 

115.02115.02152.64152.6457.5157.5144.3444.343.253.25144.07144.071010

83.6483.6499.2299.2241.8241.8232.2532.253.453.45111.37111.3755

73.5073.5093.7193.7136.7536.7528.3428.342.962.9683.8483.8422

5.305.303.933.932.652.652.052.053.643.647.447.440.50.5

Average pore Average pore 
diameter diameter 

[[µµm]m]
ττrrpp [[µµm]m]b/a x 10b/a x 10--55a x 10a x 10--55b x 10b x 10--1010MediaMedia

gradegrade
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Molten carbonate infiltrationMolten carbonate infiltration
Metal substrate poreMetal substrate pore
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where, where, 
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Substrate pore size 9Substrate pore size 9µµm.m.

Media grade 0.5 was chosenMedia grade 0.5 was chosen
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Material SelectionMaterial Selection

Carbonate MixtureCarbonate Mixture

Low melting point and high electrical conductivity Low melting point and high electrical conductivity 
→→ Li/Na/K (43.5/31.5/25 mol% ) was chosenLi/Na/K (43.5/31.5/25 mol% ) was chosen

1.751.75

501501

52/4852/48

Li/NaLi/Na
CarbonateCarbonate

1.171.171.151.151.241.24conductivity conductivity 
(S/cm)(S/cm)

710710488488397397Melting PointMelting Point
((ooCC))

56/4456/4462/3862/3843.5/31.5/2543.5/31.5/25Composition Composition 
(mol%)(mol%)

Na/KNa/K
CarbonateCarbonate

Li/KLi/K
CarbonateCarbonate

Li/Na/KLi/Na/K
CarbonateCarbonate
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Preparation of the dual phase membranePreparation of the dual phase membrane

Mix and melt Mix and melt Li/Na/K carbonateLi/Na/K carbonate
((43.5/31.5/25 43.5/31.5/25 mole%)mole%)

Infiltrate molten carbonate Infiltrate molten carbonate into the into the 
pores by dipping method.pores by dipping method.
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SEM image of dualSEM image of dual--phase membranephase membrane

Before infiltrationBefore infiltration After infiltrationAfter infiltration

10 µm 10 µm

Metal support,  1000xMetal support,  1000x MetalMetal--carbonate,  1000xcarbonate,  1000x
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Identification of dualIdentification of dual--phase structurephase structure
CarbonateCarbonate rich regionrich region

Metal rich regionMetal rich region

Fe

K10 µm

DualDual--phase membrane is successfully preparedphase membrane is successfully prepared
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Experimental ApparatusExperimental Apparatus

Vent

unsteady state type Gas permeation setupunsteady state type Gas permeation setup
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Seal design for high temperatureSeal design for high temperature

Comparison chart for high temperature sealsComparison chart for high temperature seals

3x103x10--10107x107x10--993x103x10--993x103x10--77--
He PermeanceHe Permeance
(mol/s.m(mol/s.m22.Pa).Pa)

at 450at 450oocc

6x106x10--10107x107x10--998x108x10--991x101x10--772x102x10--1010
He PermeanceHe Permeance
(mol/s.m(mol/s.m22.Pa).Pa)

at R.T.at R.T.

InertInertinertinertVaporizationVaporizationVaporizationVaporizationBurnBurnStabilityStability
at high Temp.at high Temp.

GoldGoldNickelNickel
AlloyAlloy

Graphite Graphite 
CompositeComposite

PurePure
GraphiteGraphiteRubberRubberSealSeal
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Theoretical permeation fluxTheoretical permeation flux

Wagner TheoryWagner Theory

FF (Faraday constant) : 9.65 x 10(Faraday constant) : 9.65 x 1044 C/mol , C/mol , RR (Gas constant), (Gas constant), dd (Thickness)(Thickness)

σσionion (CO(CO33
22-- conductivity) :conductivity) : 0.50.5--2 S/cm (at 600 2 S/cm (at 600 °°C, PcoC, Pco22 = 1= 1/3 /3 atmatm))

σσ elel (Electronic conductivity : 10(Electronic conductivity : 1044 S/cmS/cm

Rate determining variable : Rate determining variable : σσionion
CCOO2 2 permeance : 2permeance : 2~~10 x1010 x10--77 mol/mmol/m22.s.Pa (for 1 mm thick membrane).s.Pa (for 1 mm thick membrane)
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Single / Binary gas permeation testSingle / Binary gas permeation test
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Comparison of  permeation fluxComparison of  permeation flux
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Structure of metalStructure of metal--carbonate membranecarbonate membrane
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XRD analysis after permeationXRD analysis after permeation
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XRD analysis after permeationXRD analysis after permeation
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AccomplishmentsAccomplishments
Dense and stable dualDense and stable dual--phase metalphase metal--carbonate membranes carbonate membranes 
were successfully prepared by direct infiltration method.  were successfully prepared by direct infiltration method.  
He gasHe gas--tightness of dualtightness of dual--phase membrane was  10phase membrane was  10--66 times times 
higher than that of metal support.higher than that of metal support.

Permeance of COPermeance of CO22 with Owith O22 increases with temperature and increases with temperature and 
reaches the optimum at 650reaches the optimum at 650ooC.  Maximum ratio of COC.  Maximum ratio of CO22/N/N22
permeance was about 16 and COpermeance was about 16 and CO22 permeance was 7x10permeance was 7x10--88

mol/s.mmol/s.m22.Pa. .Pa. 

At higher temperature, membrane was deactivated due to At higher temperature, membrane was deactivated due to 
oxidation, causing a significant decrease in permeance of oxidation, causing a significant decrease in permeance of 
COCO22 with Owith O22.  XRD results shows that Iron oxide was formed .  XRD results shows that Iron oxide was formed 
on the membrane after COon the membrane after CO22 with Owith O2 2 permeation experiment .permeation experiment .
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Future workFuture work

CeramicCeramic--carbonate system for COcarbonate system for CO22
separationseparation
•• Deactivation of metal carbonate membrane is caused by Deactivation of metal carbonate membrane is caused by 

oxidation of support or reaction of metal support with oxidation of support or reaction of metal support with 
molten carbonate.molten carbonate.

•• PerovskitePerovskite type ceramic support (Lanthanum Cobaltite) type ceramic support (Lanthanum Cobaltite) 
is an alternative support with better oxidation  is an alternative support with better oxidation  
resistance than metal and good electronic conductivity.resistance than metal and good electronic conductivity.

MultiMulti--component separation experiment component separation experiment 
•• Design and setup new separation/permeation setup Design and setup new separation/permeation setup 
•• Perform separation of COPerform separation of CO22 from mixture of Nfrom mixture of N2,2,COCO2,2,OO22



27 / 34

Alternative supportAlternative support

Porous ceramic supportPorous ceramic support

12001200--1500 S/cm1500 S/cm
(400(400--600600ooC)C)

Electrical ConductivityElectrical Conductivity

LaLaaaSrSrbbCoCoccFeFeddOO
a:b:c:d=6:4:8:2a:b:c:d=6:4:8:2

CompositionComposition

Lanthanum CobaltiteLanthanum CobaltiteMaterialMaterial

Citrate MethodCitrate MethodPreparation MethodPreparation Method
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Preparation of ceramic supportsPreparation of ceramic supports

900900ooC, 20hr, Ramping Rate 2C, 20hr, Ramping Rate 2oo C/minC/minFinal SinteringFinal Sintering

600600ooC, 5C, 5--24hr24hrPreliminary SinteringPreliminary Sintering

400400ooC, 1hrC, 1hrSelf Ignition StepSelf Ignition Step

110110ooCCPowder DryingPowder Drying

100100--105105ooC, 5hC, 5hVaporizationVaporization

100100--105105ooC, stirring, 5hC, stirring, 5hPolymerizationPolymerization

La(NOLa(NO33))33.6H.6H22O, Sr(NOO, Sr(NO33))22, Fe(NO, Fe(NO33))33. 6H. 6H22O,O,
Co(NOCo(NO33))33.6H.6H22OO

PrecusorsPrecusors

DetailsDetailsStepStep
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Reactivity of LSCF + carbonate mixtureReactivity of LSCF + carbonate mixture
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Electronic conduction of the supportElectronic conduction of the support
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Comparison of supportComparison of support

1.01.02.22.25.85.8Mean poreMean pore
size (size (μμm)m)

8.0 x 108.0 x 10--661.1 x 101.1 x 10--551.0 x 101.0 x 10--44PermeancePermeance
(mol/s.m(mol/s.m22.Pa).Pa)

αα--AluminaAluminaLSCF supportLSCF supportPorous 316LSSPorous 316LSS
(Grade 0.5)(Grade 0.5)SupportSupport

Variables to control pore size distribution Variables to control pore size distribution →→

Particle size, Sintering temperatureParticle size, Sintering temperature
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MulticomponentMulticomponent separation systemseparation system
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Thank you for your attentionThank you for your attention
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(cont(cont’’d)d)
Permeance of COPermeance of CO22, N, N22, O, O22+CO+CO22 and their selectivity and their selectivity 

at 450at 450--700 700 ooCC

2.341.1793.3639.8046.68750

12.093.39432.5635.76121.28700

15.983.50744.0046.48162.72650

10.483.00487.1646.48139.48600

4.611.33321.4869.7693.00550

3.671.75243.6066.44116.24500

1.800.80209.24116.2493.00450

O2 + CO2 / N2CO2 / N2O2 + CO2N2CO2

SelectivityPermeance (mol/s.m2.Pa) x 10-10

Temp. 
(oC)
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